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Catalytic asymmetric synthesis polymerization is of much
interest as an efficient method to produce optically active polymers
from achiral monomers.1 Chiral catalysts create new chiral centers
in the main chain of the resulting polymers with control of the
absolute configuration. Precedents for such a methodology are
ring-opening polymerization of epoxide or episulfide,2 cyclopo-
lymerization of R,ω-dienes,3 polymerization of unsymmetrical
dienes4 or cyclic olefins,5 and alternating copolymerization of
R-olefins with carbon monoxide.6,7 Here, we report the first
example of asymmetric synthesis copolymerization of meso
epoxide1 with CO2, initiated by a chiral Zn catalyst.8 Since the
ring-opening of epoxides involves configurational inversion at
one of the two chiral carbons,14 meso epoxides1, achiral by
nature, produce copolymers2, including chiral diol units-O-
CHR-CHR-O-. One intriguing feature of polycarbonates2 is
their easy degradation into diols3 and CO2 by alkali treatment,
which enables the unambiguous determination of the degree of
asymmetric induction.15 In this paper, we describe the synthesis
of completely alternating copolymer2a from cyclohexene oxide

(1a) and CO2, using Et2Zn-chiral amino alcohol4. Enantiomeric
excess of 70%, determined as3a, has been achieved.

Copolymers2 were obtained by treatment of meso epoxides1
with 30 atm of CO2 in the presence of a mixture of Et2Zn and
chiral amino alcohol4.16 The representative results are sum-
marized in Table 1. Using a 1:1 mixture of Et2Zn and (S)-R,R-
diphenylpyrrolidine-2-yl-methanol (4),17 copolymer2awas given
in a quantitative yield from cyclohexene oxide (1a) (run 1). The
completely alternating nature of2a was manifested by1H NMR,
as shown in Figure 1. The peak assigned to the methine proton
is observed atδ 4.60 (for carbonate,-CH-OCO2CH-);18 no
peak was observed atδ 3.45 (for ether,-CH-OCH-) attributable
to a homopolymer of1a.

Hydrolysis of2a with aqueous NaOH gave (1R,2R)-cyclohex-
ane-1,2-diol{(R,R)-3a} of 51% ee in 85% isolated yield.15 With
shorter reaction time, the percent ee of (R,R)-3a was slightly
improved (runs 1-5), and at lower reaction temperature, 40°C,
the enantiomeric excess of (R,R)-3a was raised to 70% (run 6).
In all runs, meso-3a {(1R*,2S*)-3a} was not obtained, which
confirms the completely SN2-type ring-opening of1a during the
copolymerization.14

The 13C NMR of the sample of run 6 (Figure 2 (i)) raises a
question regarding the reported assignment of syndiotactic and
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Table 1. Asymmetric Alternating Copolymerization of Epoxide1
and Carbon Dioxidea

run
epox-
ide

4/Zn,
mol/mol

temp,
°C

time,
h

yield
of 2,b

%
Mn

(Mw/Mn)c

yield
of 3d

%
% ee
of 3e

1 1a 1.00 60 24 >99 13000 (3.6) 85 51 (R,R)f

2 1a 1.00 60 12 89 13000 (4.3) 95 57 (R,R)f

3 1a 1.00 60 8 92 12000 (2.9) 87 58 (R,R)f

4 1a 1.00 60 4 49 11000 (3.7) 98 59 (R,R)f

5 1a 1.00 60 2 37 9800 (2.7) 88 68 (R,R)f

6 1a 1.00 40 12 85 13000 (1.9) 94 70 (R,R)f

7 1a 1.00 40 4 20 8400 (2.2) 93 73 (R,R)f

8 1a 0 60 48 0
9 1a 0.60 60 48 41 77000 (7.5) 79 3 (R,R)f

10 1a 0.80 60 48 71 43000 (13.7) 76 11 (R,R)f

11 1a 1.10 60 24 >99 18000 (1.7) 82 23 (R,R)f

12 1a 1.20 60 48 98 13000 (1.7) 85 22 (R,R)f

13 1b 1.00 60 68 66 12000 (3.9) 83 24 (R,R)g

14 1c 1.00 60 48 8 20000 (2.0) 70 34 (R,R)f

a Meso epoxide (1, 10 mmol) was treated with carbon dioxide (30
atm) in the presence of a mixture of an amino alcohol4 (0.50 mmol)
and Et2Zn (1.25 M in hexane, 0.50 mmol) in toluene (17 mL). After
aqueous workup, the resulting copolymer was precipitated with MeOH,
filtered, and eluted by CHCl3. b Calculated based on1. c Estimated by
size-exclusion chromatography analysis using a polystyrene standard.
d Calculated based on2. e Absolute configuration is shown in paren-
theses.f Determined by GLC analysis with a chiral column (Chrompack,
CHIRASIL-DEX CB). g The product 3b was derivatized into its
dibenzoate, and the % ee was determined by HPLC analysis with a
chiral column (Daicel, CHIRALCEL OJ).
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isotactic diads. In a syndiotactic diad, two diol units with the
opposite absolute configuration are connected through a carbonate

bond. The same two enantiomers afford an isotactic diad. Thus,
for a 94% yield of (R,R)-3a with 70% ee, the possible maximum
content of the syndiotactic diad and the possible minimum content
of the isotactic diad in copolymer2acan be calculated to be 40%
and 60%, respectively.19 However, if we follow the literature
characterization,20,21the 83:17 ratio of peaks atδ 153.7 and 153.1
in Figure 2(i) would be interpreted as syndiotactic (the former,
83%) and isotactic (the latter, 17%). The contradiction between
the two sets of values suggests thatthe signal due to the isotactic
diad is included in a peak atδ 153.7 but not in that atδ 153.1.
Similarly, the sample of run 1 (51% ee, namely, a mixture of
75.5% of (R,R)-3a and 24.5% of (S,S)-3a) shows a similar peak
pattern with a peak ratio of 78:22 forδ 153.7 and 153.1,
respectively.

Chain transfer reactions are suggested to exist by the experi-
ments with varying reaction times (runs 1-5). It should be noted
that the ratio of4/Et2Zn is essential to achieve the highest activity
and selectivity. As shown in runs 1 and 8-12, a slight change in
the ratio caused drastic loss of the catalytic activity and/or
selectivity. Hence, although the structure of the real active species
is unknown at this moment,17 it seems that the species consists
of 4 and Et2Zn in a 1:1 ratio.

The use of cyclopentene oxide (1b) andcis-2-butene oxide (1c)
as substrates gave the corresponding completely alternating
copolymer2b and2c, respectively; however, the percent ee’s of
3b and3c were both lower than that of3a (runs 13 and 14).

In conclusion, the asymmetric synthesis polymerization of
cyclohexene oxide (1a) and CO2 gave completely alternating
copolymer2a in which the percent ee of the chiral diol unit3a
was controlled to be 70%, or at least 60% (R,R).19 Thus, highly
isotactic copolymer2a has been prepared in an optically active
form, for the first time. This work provides a new aspect of
asymmetric synthesis polymerization with the unambiguous
determination of enantiomeric excess of the chiral units. Mean-
while, the overall transformation from1a to 3amay be considered
as a new route for asymmetric hydrolysis of1a.22 Further studies
are focused on the determination of the precise structure of the
active species.

Supporting Information Available: Experimental details,1H NMR
charts of4/Et2Zn, and13C NMR charts of polymers obtained in runs 1
and 6 of Table 1 (PDF). This material is available free of charge via the
Internet at http://pubs.acs.org.
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Figure 1. 1H NMR of the copolymer2a obtained in run 1 of Table 1.
Methine protons geminal to oxygens give peaks atδ 4.60, assigned to
carbonates. The absence of any peak atδ 3.45 (less than 0.01% of the
peak atδ 4.60) attributed to an ether bond clearly demonstrates that the
polymerization has proceeded in a completely alternating fashion of1a
and CO2 with no homopolymerization of1a. All products from1a in
Table 1 show the same peak patterns unless otherwise stated.

Figure 2. The carbonyl region of13C NMR of (i) the sample of Table
1, run 6, and (ii) run 1. In (i), the reported assignment forδ 153.7 and
153.1, as syndiotactic and isotactic diad, respectively, gives the syndio-
tactic/isotactic ) 83/17 ratio, the result contradicting the possible
maximum syndioselectivity of 40% calculated from 94% yield and 70%
ee of3a.
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